NAG Toolbox for MATLAB

g07ca

1 Purpose

g07ca computes a *t*-test statistic to test for a difference in means between two Normal populations, together with a confidence interval for the difference between the means.

2 Syntax

[t, df, prob, dl, du, ifail] = g07ca(tail, equal, nx, ny, xmean, ymean,
xstd, ystd, clevel)

3 Description

Consider two independent samples, denoted by X and Y, of size n_x and n_y drawn from two Normal populations with means μ_x and μ_y , and variances σ_x^2 and σ_y^2 respectively. Denote the sample means by \bar{x} and \bar{y} and the sample variances by s_x^2 and s_y^2 respectively.

g07ca calculates a test statistic and its significance level to test the null hypothesis $H_0: \mu_x = \mu_y$, together with upper and lower confidence limits for $\mu_x - \mu_y$. The test used depends on whether or not the two population variances are assumed to be equal.

1. It is assumed that the two variances are equal, that is $\sigma_x^2 = \sigma_y^2$.

The test used is the two sample t-test. The test statistic t is defined by;

$$t_{\text{obs}} = \frac{\bar{x} - \bar{y}}{s\sqrt{(1/n_x) + (1/n_y)}}$$

where

$$s^{2} = \frac{(n_{x} - 1)s_{x}^{2} + (n_{y} - 1)s_{y}^{2}}{n_{x} + n_{y} - 2}$$

is the pooled variance of the two samples.

Under the null hypothesis H_0 this test statistic has a t-distribution with $(n_x + n_y - 2)$ degrees of freedom.

The test of H_0 is carried out against one of three possible alternatives;

 $H_1: \mu_x \neq \mu_y$; the significance level, $p = P(t \geq |t_{\rm obs}|)$, i.e., a two tailed probability.

 $H_1: \mu_x > \mu_y$; the significance level, $p = P(t \ge t_{\rm obs})$, i.e., an upper tail probability.

 $H_1: \mu_x < \mu_y$; the significance level, $p = P(t \le t_{\rm obs})$, i.e., a lower tail probability.

Upper and lower $100(1-\alpha)\%$ confidence limits for $\mu_x - \mu_y$ are calculated as:

$$(\bar{x} - \bar{y}) \pm t_{1-\alpha/2} s \sqrt{(1/n_x) + (1/n_y)}.$$

where $t_{1-\alpha/2}$ is the $100(1-\alpha/2)$ percentage point of the *t*-distribution with $(n_x + n_y - 2)$ degrees of freedom.

2. It is not assumed that the two variances are equal.

If the population variances are not equal the usual two sample *t*-statistic no longer has a *t*-distribution and an approximate test is used.

[NP3663/21] g07ca.1

g07ca NAG Toolbox Manual

This problem is often referred to as the Behrens-Fisher problem, see Kendall and Stuart 1969. The test used here is based on Satterthwaites procedure. To test the null hypothesis the test statistic t' is used where

$$t'_{\text{obs}} = \frac{\bar{x} - \bar{y}}{\text{se}(\bar{x} - \bar{y})}$$

where
$$\operatorname{se}(\bar{x} - \bar{y}) = \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$
.

A t-distribution with f degrees of freedom is used to approximate the distribution of t' where

$$f = \frac{\sec(\bar{x} - \bar{y})^4}{\frac{(s_x^2/n_x)^2}{(n_x - 1)} + \frac{(s_y^2/n_y)^2}{(n_y - 1)}}.$$

The test of H_0 is carried out against one of the three alternative hypotheses described above, replacing t by t' and $t_{\rm obs}$ by $t'_{\rm obs}$.

Upper and lower $100(1-\alpha)\%$ confidence limits for $\mu_x - \mu_y$ are calculated as:

$$(\bar{x}-\bar{y})\pm t_{1-\alpha/2}\operatorname{se}(x-\bar{y}).$$

where $t_{1-\alpha/2}$ is the $100(1-\alpha/2)$ percentage point of the t-distribution with f degrees of freedom.

4 References

Johnson M G and Kotz A 1969 *The Encyclopedia of Statistics* **2** Griffin Kendall M G and Stuart A 1969 *The Advanced Theory of Statistics (Volume 1)* (3rd Edition) Griffin Snedecor G W and Cochran W G 1967 *Statistical Methods* Iowa State University Press

5 Parameters

5.1 Compulsory Input Parameters

1: tail – string

Indicates which tail probability is to be calculated, and thus which alternative hypothesis is to be used.

tail = 'T'

The two tail probability, i.e., $H_1: \mu_x \neq \mu_v$.

tail = 'U'

The upper tail probability, i.e., $H_1: \mu_x > \mu_v$.

tail = 'L'

The lower tail probability, i.e., $H_1: \mu_x < \mu_v$.

Constraint: tail = 'T', 'U' or 'L'.

2: equal – string

Indicates whether the population variances are assumed to be equal or not.

g07ca.2 [NP3663/21]

equal = 'E'

The population variances are assumed to be equal, that is $\sigma_x^2 = \sigma_y^2$.

equal = 'U'

The population variances are not assumed to be equal.

Constraint: equal = 'E' or 'U'.

3: nx - int32 scalar

 n_x , the size of the X sample.

Constraint: $\mathbf{nx} \geq 2$.

4: ny - int32 scalar

 n_{y} , the size of the Y sample.

Constraint: $\mathbf{ny} \geq 2$.

5: xmean – double scalar

 \bar{x} , the mean of the X sample.

6: ymean – double scalar

 \bar{y} , the mean of the Y sample.

7: xstd – double scalar

 s_x , the standard deviation of the X sample.

Constraint: $\mathbf{xstd} > 0.0$.

8: ystd – double scalar

 s_{ν} , the standard deviation of the Y sample.

Constraint: ystd > 0.0.

9: **clevel – double scalar**

The confidence level, $1 - \alpha$, for the specified tail. For example **clevel** = 0.95 will give a 95% confidence interval.

Constraint: 0.0 < clevel < 1.0.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: t - double scalar

Contains the test statistic, t_{obs} or t'_{obs} .

2: **df – double scalar**

Contains the degrees of freedom for the test statistic.

[NP3663/21] g07ca.3

g07ca NAG Toolbox Manual

3: **prob** – **double scalar**

Contains the significance level, that is the tail probability, p, as defined by **tail**.

4: **dl – double scalar**

Contains the lower confidence limit for $\mu_x - \mu_v$.

5: du – double scalar

Contains the upper confidence limit for $\mu_x - \mu_v$.

6: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
ifail = 1
```

```
On entry, \mathbf{tail} \neq 'T', 'U' or 'L', or \mathbf{equal} \neq 'E' or 'U', or \mathbf{nx} < 2, or \mathbf{ny} < 2, or \mathbf{xstd} \leq 0.0, or \mathbf{ystd} \leq 0.0, or \mathbf{clevel} \leq 0.0, or \mathbf{clevel} \geq 1.0.
```

7 Accuracy

The computed probability and the confidence limits should be accurate to approximately five significant figures.

8 Further Comments

The sample means and standard deviations can be computed using g01aa.

9 Example

```
tail = 'Two';
equal = 'Equal';
nx = int32(4);
ny = int32(8);
xmean = 25;
ymean = 21;
xstd = 0.8185;
ystd = 4.2083;
clevel = 0.95;
[t, df, prob, dl, du, ifail] = ...
    q07ca(tail, equal, nx, ny, xmean, ymean, xstd, ystd, clevel)
    1.8403
df =
    10
prob =
    0.0955
```

g07ca.4 [NP3663/21]

g07ca

```
d1 =
    -0.8429
du =
    8.8429
ifail =
    0
```

[NP3663/21] g07ca.5 (last)